2008 A/L Structured Essay Question No (04)

4.	A moving coil galvanometer	with	coil	resistance	R _G	produces	full	scale	deflection	when	a	current
	of I_0 is passed through it.											

(a) Write down an expression for the voltage (V_0) appearing across the terminals of the galvanometer in terms of R_G and I_0 when it shows a full scale deflection.

.....

(b) When a voltage (V_1) which is less than V_0 is appeared across the galvanometer it produces a deflection θ . If θ_m is the full scale deflection of the galvanometer, write-down an expression for V_1 in terms of θ , θ_m and V_0 .

.....

(c) This galvanometer is to be converted to a voltmeter giving full scale deflection for a voltage V_2 which is much larger than V_0 . If you are provided with a resistor having the suitable value R_1 show by drawing a diagram how you would connect this resistor to the galvanometer.

	(<i>d</i>)	Write	down	an	expression	for	R_1	in	terms	of	<i>V</i> ₂ ,	<i>I</i> ₀	and R_G			
--	--------------	-------	------	----	------------	-----	-------	----	-------	----	-------------------------	-----------------------	-----------	--	--	--

(e) If $R_G = 20 \ \Omega$ and $I_0 = 10 \text{ mA}$ find the value of the resistance R_1 necessary to convert this galvanometer to a voltmeter which gives a full scale deflection for 1 V.

.....

(f) Also calculate the values of resistances R_2 and R_3 that are necessary to convert this galvanometer to voltmeters which give full scale deflection for 10 V and 50 V respectively.

(g) Using the resistance values calculated in (e) and (f) and the galvanometer mentioned above, draw a circuit diagram of a multi-range voltmeter which can be used to measure voltages in three different ranges of 0 - 1V, 0 - 10V and 0 - 50V. Use a 3-way switch to select ranges.

6

(h) If this voltmeter is used in the 0 - 10 V range to measure a voltage of the order of 5V appearing across a 2000 Ω resistor, would you expect to obtain the actual value? Explain your answer.

